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Inclusive (d , p) reaction

let’s concentrate in the reaction A+d→ B(=A+n)+p
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we are interested in the inclusive cross section, i.e., we will sum over all
final states φcB .
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Derivation of the differential cross section

the double differential cross section with respect to the proton energy and
angle for the population of a specific final φcB

d2σ

dΩpdEp
=

2π

~vd
ρ(Ep)

∣∣∣〈χpφ
c
B |V |Ψ(+)

〉∣∣∣2 .
Sum over all channels, with the approximation Ψ(+) ≈ χdφdφA

d2σ

dΩpdEp
= − 2π

~vd
ρ(Ep)

×
∑
c

〈χdφdφA|V |χpφ
c
B〉 δ(E − Ep − E c

B) 〈φcBχp|V |φAχdφd〉

χd → deuteron incoming wave, φd → deuteron wavefunction,
χp → proton outgoing wave φA → target core ground state.

East Lansing, July 19th 2016 slide 3/27



Sum over final states

the imaginary part of the Green’s function G is an operator representation
of the δ–function,

πδ(E − Ep − E c
B) = lim

ε→0
=
∑
c

|φcB〉 〈φcB |
E − Ep − HB + iε

= =G

d2σ

dΩpdEp
= − 2

~vd
ρ(Ep)= 〈χdφdφA|V |χp〉G 〈χp|V |φAχdφd〉

We got rid of the (infinite) sum over final states,

but G is an extremely complex object!

We still need to deal with that.
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Optical reduction of G

If the interaction V do not act on φA

〈χdφdφA|V |χp〉G 〈χp|V |φAχdφd〉
= 〈χdφd |V |χp〉 〈φA|G |φA〉 〈χp|V |χdφd〉
= 〈χdφd |V |χp〉Gopt 〈χp|V |χdφd〉 ,

where Gopt is the optical reduction of G

Gopt = lim
ε→0

1

E − Ep − Tn − UAn(rAn) + iε
,

now UAn(rAn) = VAn(rAn) + iWAn(rAn) and thus Gopt are single–particle,
tractable operators.

The effective neutron–target interaction UAn(rAn), a.k.a. optical
potential, a.k.a. self–energy can be provided by structure
calculations

East Lansing, July 19th 2016 slide 5/27



Capture and elastic breakup cross sections

the imaginary part of Gopt splits in two terms

=Gopt =

elastic breakup︷ ︸︸ ︷
−π
∑
kn

|χn〉δ
(
E − Ep −

k2n
2mn

)
〈χn|+

non elastic breakup︷ ︸︸ ︷
Gopt

†WAn Gopt ,

we define the neutron wavefunction |ψn〉 = Gopt 〈χp|V |χdφd〉

cross sections for non elastic breakup (NEB) and elastic breakup (EB)

d2σ

dΩpdEp

]NEB
= − 2

~vd
ρ(Ep) 〈ψn|WAn |ψn〉 ,

d2σ

dΩpdEp

]EB
= − 2

~vd
ρ(Ep)ρ(En) |〈χnχp|V |χdφd〉|2 ,
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Neutron states in nuclei
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neutron wavefunctions

the neutron wavefunctions

|ψn〉 = Gopt 〈χp|V |χdφd〉

can be computed for ANY neutron energy, positive or negative
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|ψn〉 are the solutions of an inhomogeneous Schrödinger equation
(HAn − EAn) |ψn〉 = 〈χp|V |χdφd〉

East Lansing, July 19th 2016 slide 8/27



Breakup above neutron–emission threshold

proton angular differential cross section
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Disentangling elastic and non elastic breakup

93Nb(d , p) (Mastroleo et al., Phys. Rev. C 42 (1990) 683)
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We obtain spin–parity distributions for the compound nucleus.

Contributions from elastic and non elastic breakup disentangled.
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Dropping a proton

167Erld,n)@15aMeV

167Erl3He,d)@20aMeV
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We can also transfer charged clusters
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neutron transfer limit (isolated–resonance, first–order
approximation)

Let’s consider the limit WAn → 0 (single–particle width Γ→ 0). For an
energy E such that |E − En| � D, (isolated resonance)

Gopt ≈ lim
WAn→0

|φn〉〈φn|
E − Ep − En − i〈φn|WAn|φn〉

;

with |φn〉 eigenstate of HAn = Tn + <(UAn)

d2σ

dΩpdEp
∼ lim

WAn→0
〈χdφd |V |χp〉

× |φn〉〈φn|WAn|φn〉〈φn|
(E − Ep − En)2 + 〈φn|WAn|φn〉2

〈χp|V |χdφd〉 ,

we get the direct transfer cross section:

d2σ

dΩpdEp
∼ | 〈χpφn|V |χdφd〉 |2δ(E − Ep − En)
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Validity of first order approximation

For WAn small, we can apply first order perturbation theory,

d2σ

dΩpdEp
(E ,Ω)

]NEB

≈ 1

π

〈φn|WAn|φn〉
(En − E )2 + 〈φn|WAn|φn〉2

dσn
dΩ

(Ω)

]transfer
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we compare the complete calculation with the isolated–resonance,
first–order approximation for WAn = 0.5 MeV, WAn = 3 MeV and
WAn = 10 MeV
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Spectral function and absorption cross section
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Austern (post)–Udagawa (prior) formalisms

The interaction V can be taken either in the prior or the post
representation,

Austern (post)→ V ≡ Vpost ∼ Vpn(rpn) (recently revived by Moro
and Lei, from Sevilla and Carlson from São Paulo)

Udagawa (prior) → V ≡ Vprior ∼ VAn(rAn, ξAn) (used in calculations
showed here)

in the prior representation, V can act on φA → the optical reduction gives
rise to new terms:

d2σ

dΩpdEp

]post
=− 2

~vd
ρ(Ep)

[
=
〈
ψprior
n |WAn |ψprior

n

〉
+ 2<

〈
ψNON
n |WAn|ψprior

n

〉
+
〈
ψNON
n |WAn |ψNON

n

〉]
,

where ψNON
n = 〈χp| χdφd〉.

The nature of the 2–step process depends on the representation
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Summary, conclusions and some prospectives

We have presented a reaction formalism for inclusive
deuteron–induced reactions.

Valid for final neutron states from Fermi energy → to scattering
states

Disentangles elastic and non elastic breakup contributions to the
proton singles.

Probe of nuclear structure in the continuum.

Provides spin–parity distributions.

Useful for surrogate reactions.

Need for optical potentials.

Need to address non–locality.

Can be generalized to other three–body problems.

Can be extended for (p, d) reactions (hole states).
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The 3–body model

rAp

rBn

rpn

An

p

rd
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ξA
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From H to H3B

H = Tp +Tn +HA(ξA) +Vpn(rpn) +
VAn(rAn, ξA) + VAp(rAp, ξA)

H3B = Tp + Tn + HA(ξA) +
Vpn(rpn) + UAn(rAn) + UAp(rAp)
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Observables: angular differential cross sections (neutron
bound states)
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double proton differential cross section

d2σ

dΩpdEp
=

2π

~vd
ρ(Ep)

∑
l ,m,lp

∫ ∣∣∣ϕlmlp(rBn; kp)Y
lp
−m(θp)

∣∣∣2W (rAn) drBn.
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Observables: elastic breakup and capture cross sections
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elastic breakup and capture cross sections as a function of the proton
energy. The Koning–Delaroche global optical potential has been used as
the UAn interaction (Koning and Delaroche, Nucl. Phys. A 713 (2003)
231).
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Non–orthogonality term
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Obtaining spin distributions
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Getting rid of Weisskopf–Ewing approximation

Younes and Britt, PRC
68(2003)034610

Weisskopf–Ewing
approximation:
P(d , nx) = σ(E )G (E , x)

inaccurate for x = γ and for
x = f in the low–energy regime

can be replaced by P(d , nx) =∑
J,π σ(E , J, π)G (E , J, π, x) if

σ(E , J, π) can be predicted.
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Introduction

We present a formalism for inclusive deuteron–induced reactions. We thus
want to describe within the same framework:

elastic breakup

direct transfer

compound nucleus

Direct neutron transfer: should be
compatible with existing theories.

Elastic deuteron breakup: “transfer”
to continuum states.

Non elastic breakup (direct transfer,
inelastic excitation and compound
nucleus formation): absorption above
and below neutron emission
threshold.

Important application in surrogate
reactions: obtain spin–parity
distributions, get rid of
Weisskopf–Ewing approximation.
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Historical background

breakup-fusionQreactions

protonsQandQαQyields
bombardingQ209BiQwithQ
12CQandQ16OQ

BrittQandQQuinton,QPhys.QRev.Q124Q819617Q877

Kerman and McVoy, Ann. Phys.
122 (1979)197

Austern and Vincent, Phys.
Rev. C23 (1981) 1847

Udagawa and Tamura, Phys.
Rev. C24(1981) 1348

Last paper: Mastroleo,
Udagawa, Mustafa Phys. Rev.
C42 (1990) 683

Controversy between Udagawa
and Austern formalism left
somehow unresolved.
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2–step process (post representation)
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Application to surrogate reactions

B*

B*

Desired reaction: neutron induced fission, gamma emission and 
neutron emission.

The surrogate method consists in producing the same compound 
nucleus B* by bombarding a deuteron target with a radio active 
beam of the nuclear species A.

A theoretical reaction formalism that describes the production 
of all open channels B* is needed.

n

A

A d

fission

gamma
emission

neutron
emission

fission

gamma
emission

neutron
emission

Surrogate for neutron capture
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Weisskopf–Ewing approximation

W-ECapproximation

Weisskopf-EwingCapproximation:CprobabilityCofCγCdecayCindependentCofCJ,π

DifferentCJ,π DifferentCcrossCsectionCforCγCemission
EscherCandCDietrich,CPRCC81C024612C(2010)

Weisskopf–Ewing is inaccurate for (n, γ)
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Weisskopf–Ewing approximation

W-ECapproximation

Weisskopf-EwingCapproximation:CprobabilityCofCγCdecayCindependentCofCJ,π

DifferentCJ,π DifferentCcrossCsectionCforCγCemission
EscherCandCDietrich,CPRCC81C024612C(2010)

We need theory to predict J, π distributions
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